skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Staicu, Cristian-Alexandru"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Regular Expression Denial of Service (ReDoS) is a vulnerability class that has become prominent in recent years. Attackers can weaponize such weaknesses as part of asymmetric cyberattacks that exploit the slow worst-case matching time of regular expres- sion (regex) engines. In the past, problematic regular expressions have led to outages at Cloudflare and Stack Overflow, showing the severity of the problem. While ReDoS has drawn significant research attention, there has been no systematization of knowledge to delineate the state of the art and identify opportunities for fur- ther research. In this paper, we describe the existing knowledge on ReDoS. We first provide a systematic literature review, discussing approaches for detecting, preventing, and mitigating ReDoS vul- nerabilities. Then, our engineering review surveys the latest regex engines to examine whether and how ReDoS defenses have been re- alized. Combining our findings, we observe that (1) in the literature, almost no studies evaluate whether and how ReDoS vulnerabilities can be weaponized against real systems, making it difficult to assess their real-world impact; and (2) from an engineering view, many mainstream regex engines now have ReDoS defenses, rendering many threat models obsolete. We conclude with an extensive dis- cussion, highlighting avenues for future work. The open challenges in ReDoS research are to evaluate emerging defenses and support engineers in migrating to defended engines. We also highlight the parallel between performance bugs and asymmetric DoS, and we argue that future work should capitalize more on this similarity and adopt a more systematic view on ReDoS-like vulnerabilities. 
    more » « less
    Free, publicly-accessible full text available August 25, 2026